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ABSTRACT: 
This paper represents a summary of our methodology 
for Verification and Validation and Uncertainty 
Quantification. A graded scale methodology is 
presented and related to other concepts in the literature. 
We describe the critical nature of quantified 
Verification and Validation with Uncertainty 
Quantification at specified Confidence levels in 
evaluating system certification status. Only after 
Verification and Validation has contributed to 
Uncertainty Quantification at specified confidence can 
rational tradeoffs of various scenarios be made. 
Verification and Validation methods for various 
scenarios and issues are applied in assessments of 
Quantified Reliability at Confidence and we 
summarize briefly how this can lead to a Value 
Engineering methodology for investment strategy. 
Due to the evolving nature of such methodologies, this 
work represents the views of the authors and not 
necessarily the views of Lawrence Livermore National 
Laboratory. 

INTRODUCTION: 
A process that leads through Verification & Validation 
(V&V) and eventually to the investment strategy is 
shown in Figure 1. First we establish system 
environment and model Requirements. Based on these, 
the V&V process leads to models with Uncertainty 
Quantification (UQ) at confidence [C]. We use these 
models to obtain margins Fr] and reliability [R] 
equivalents, and Quantified Reliability at Confidence 
(QRC). We use QRC products for Value Engineering. 

A Value Engineering related Quantified Systems Value 
(QSV,) is defined and then adjusted as a function of 
Reliability at Confidence (RC*) over the system 
environments (i=l,E), with the economic function of 
Present Value Factor (PV,) in the time (t) domain: 

OQSV = QSVo PV,[t] A[t]{n , = 1 , ~  (RC*), } dt 
. . . . . . [ 11 

Key to the investment strategy process, and its likage 
back to V&V, is the BenefitKOst Ratio (BCR): Benefit 
(El) is proportional to Risk Reduction, expressed as 
AQSV. With the above relation, ARisk is proportional 
to A(QSV), and hence to A(QRC), and finally A(QRC) 
links to the fidelity of our Quantitative V&V 
statements (confidence bounded uncertainties). Then 
“BCR” is (Benefit-Cost)Cost. Quantified V&V will 
show us that there is not a unique BCR - we must 
explore its bounds for any given decision. Our 
decisions will fall into 3 basic bins: 

1. High BCR within our V&V bounds: Positive 
decision indicator [i.e. “do it”] 

2. Low BCR within our V&V bounds: Negative 
decision indicator [Le. “don’t do it”] 

3. BCR varies high to low depending on V&V 
bounds: [Le. more quantification is needed] 

The end product and dollar benefit can be explained 
using a Risk=Likelihood*Consequence Matrix as 
shown in Figure 2. V&V plays a quantified role, one 
that is now directly proportional to Risk Reduction and 
Value Engineering quantities. 

Reauirements and Graded Scale V&V 
The first step is to establish system (and hence model) 
requirements. Based on these requirements for the 
system and its environments, the V&V process begins, 
leading to validated models with uncertainties at 
confidence. To enable a semi-quantitative V&V 
evaluation on our way to a quantitative V&V 
statement, 
we are developing a continuously evolving 19-point 
VERification and 35-point VALidation checklist, with 
suggested criteria to consider when performing V&V 
analyses. These factors are summarized in an overall 
10-point summary. 
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Figure 1. Flow diagramfrom system Requirements through V&V, through uncertainty quantification and 
margins; onward through QRC, then Value Engineering, QSV, and BenefitICost Ratio BCR. 

Low Medium High 

Consequence b 

Increasing QSV, b 

Increasing Present Value PV - 
Figure 2. Dollar Benefit of V&V and Quantitative Certification, expressed as a standard 
Risk=Likelihood*Consequence Matrix. Likelihood becomes analogous to assessed (1-QRC); Consequence is 
expressed in Value Engineering / Earned Value [ie dollars] terms. 
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DEFINITIONS of VERIFICATION and 
VALIDATION: 

We begin by describing our favorite V&V 
definitions and a V&V process that leads to 
qualitative measures for V&V. Following the 
qualitative process enables quantitative Validation 
Statements expressed with Uncertainties (U) at 
Confidence [C]. A compendium of definitions 
proposed from the community is available in the 
literature. Our preferences include the following: 

Verification: 

Verification’: “Verification of a CODE: The process 
that determines that the computer code accurately 
represents the mathematical equations”. 

Verification’: “Verification of a CALCULATION: 
The process that determines that the computer 
calculation for a particular problem of interest 
accurately represents the solutions of the 
mathematical model equations”. 

These definitions should enable a quantitative 
Verification Statement, such as the following 
example: 

“This material model feature has demonstrated 
99.3% accuracy on elastic plastic deviatoric stresses 
and strains [supporting documents should exist and 
be cited], and it has shown this accuracy in 
combination with 8 element types with aspect ratios 
as high as 5 and angles as low as 50 degrees. The 
model is known not to work well with values of bulk- 
to-shear modulus higher than IO.  f i e  model has 
shown over 96% accuracy with contact bulk stiJhss 
ratios as high as 1000. ” 

Validation: 

Validation’: “The process of determining the degree 
to which a model is an accurate representation of the 
real world from the perspective of the intended uses 
of the model.” (Quotedfiom Oberkumpf and 
Trucano.’). 

Validation’: “Validated Model: A model that has 
confidence bounds on the output. A validated model 
output has the following characteristics: 

1. The quantity of interest 
2. An estimate of the bias 
3. A set of confidence bounds. 

A validated model is one where we can make a 
formal statement after running the model similar to: 

‘I am 90% confident that i f I  build and 
measure the quantity of interest, that it will fall 

within the confidence ban& (of uncertainty) shown 
around the model output. ”’ 

General Statement of Methodolow: 
We suggest evaluation of the code and model 
simulation results at three layers of comparison 
analogous to that suggested by AIAA’, as well as a 
Software Quality Engineering (SQE) Layer “0” that 
supports the confidence in the software engineering 
underlying all of the other V&V activities. 

All of these layers, including Layer 0 SQE, must be 
done using a graded scale proportional to the risk, 
consequence, and investment in the codes and 
models anticipated. 

LAYER 0: 

The V&V Program must first address evaluation of 
the SQE Practices and improvement for each code 
effort. SQE is a broad topic not addressed in this 
short paper. 

LAYER 1: 

The first layer compares simulation results to known 
analytic and semi-analytic solutions for specific 
verification test problems (Verification). 

LAYER 2: 

The second layer compares simulation results code 
versus code in a regime of interest that is known to 
be verified and validated to a given degree. Code vs. 
code “Validation by Similarity” is certainly not 
rigorous, but it may be cost effective, allowing us to 
save precious resources for more rigorous V&V of 
higher risk environments. Many note the cautions of 
optimistic results from code-to-code comparison. 
Code-vs-code validation can never prove that the 
pair of coddmodel combination is right - but it can 
prove that at least one of them is wrong - and by how 
much. Often this can be done with orders of 
magnitude less effort than physical validation testing. 
Code-to-code comparisons offer partial remedies to 
the following:, 

0 

Some tests cannot be done due to treaty, 
cost, lack of parts, funds, health and safety 
Comparing to legacy data is indeed 
essential, but often not as convincing as we 
would like: Our number of data points “N*” 
is small for a given system, and the detailed 
data is usually lacking - and indeed if it had 
been obtained we would encounter at length 
the dilemma that “you cannot take a 
measurement without perturbing the result 
of your measurement” 

0 Code-to-code validation, while risking 

3 
American Institute of Aeronautics and Astronautics 



interdependency, allows comparison of 
nearly any desired quantity in any desired 
level of detail - at nil additional cost or 
fidelity risk 
Legacy vs. modem codes can often be 
compared -we can make statements about 
“validation compared to the legacy 
validation level” - if we consciously include 
any new “degrees of freedom (K)” 
In an era where computation cost is falling 
and test cost is rising, a strong V&V code- 
to-code element is compelling from an 
efficiency standpoint - before proposing 
expensive tests with scarce resources and 
competing priorities and liability risks. 

0 

0 

LAYER 3: 

The third layer compares model simulation results 
against legacy and modern experimental data 
(Validation). The legacy comparisons can be 
properly termed either Calibration (involving tuning 
of the model), or Postdictive Validation (using the 
model with no more tuning, as if the data were new). 
The modem test comparisons can be properly termed 
Predictive Validation, if we take advantage of these 
rare and expensive opportunities to make a prediction 
before our new tests are run. Of course, the Layer 3 
process is iterative: We can repeat our Calibration 
process, or expand it at the expense of the old data 
remaining for Postdictive Validation. However, in 
doing so, we raise the CALNAL Ratio, or the ratio 
of test data we have used to “tune” our models to 
the test data we use without tuning). We can then 
sharpen our predictions and obtain, with yet more 
new tests, an improved assessment of Predictive 
Validation ability. 

Of necessity intertwined with the three layers for 
code comparison within the V&V Program, 
Uncertainty Quantification (UQ) is essential as an 
integral focus area for evaluating the many sources of 
error in simulation, including uncertainties from the 
experimental databases, the code algorithms, 
software implementation, and physical and material 
models. Due to our preferred definitions of 
Validation above, we view V&V as requiring 
“ensemble computing” as stressed by Oberkampf and 
Trucano3. That is, the UQ process involves extensive 
amounts of model runs for sensitivity and uncertainty 
studies to enable quantitative validation statements 
that must accompany any claims of a level of 
validation. 

Methodolow and IndeDendence Metrics 
Ideally V&V would be a “one-pass” process, where 
codes and code features would be passed to the 

independent design teams, V&V’d, and cleared for 
production use. We postulate this for simplicity -but 
of course in reality V&V is an iterative process with 
the code teams, as both the developers and the users 
verify both the codes and the familiarity with them. 
We enable that iterative process by running 
combinations of the code-team supplied “regression” 
or “example” or “verification” suite - but for formal 
V& V even some of these verijication runs are made 
by the V& V team - the people outside the code 
development team -who are also the eventual team 
of designer /analysts. In this way, we assure a 
product ready for Validation, where the “product” is 
a system of the code, user, documentation, support, 
and platform. This is not a slight to the code 
developers whatsoever - many of those in V&V have 
been developers at one time and recall the dilemma 
that when one develops a piece of code, it is common 
that the developer can successfully use the capability 
-but other users cannot. Verification and Validation 
cannot be formally declared until a user base (the 
a!esigner/analyst groups) declare it so. 

Verification and Validation Meters and Checklists 
We can envision at least 4 methods for expressing 

the pedigree of V&V for a given code feature or 
model. Consider the following 4 methods: 

A. 

B. 

C. 

D. 

Use of words like “Fully Validated”, 
“Unvalidated”, “Validated Code”, etc. (We 
do not recommend this method.) 

Use of a simple one-number “scale” e.g. 0- 
1,O-5, or 0-10 as we suggest in our 
description of our “0-10 Scale” VER and 
VAL Meters. The VER and VAL Meters 
provide some measure of acceptability and 
caution; they are quantitative but they are 
subjectively set. 

A multi-point “checklist” of thought, 
procedure, and documentation - including 
partial completion of (D) as well. 

Quantitative error and uncertainty bounds at 
confidence, over a regime and quantity of 
interest for design and decision purposes. 

We wish to determine what, of (A-D), should be a 
minimum set, and to express the level of V&V most 
efficiently and yet adequately, and as quantitatively 
as possible yet in a compact form. Full use of method 
(C) or (D) may not be warranted. However, use of 
the descriptors in (A) conveys very little meaning. 
We suggest that as a minimum, method (B) - a 
simple “scale” - conveys an expert opinion rating of 
the V&V level of a simulation in a condensed form. 
Certainly this is not a complete method, yet it 
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conveys a more accurate picture than (A), and is 
thought provoking enough to lead us to pursue 
methods (C) and @). 

As we will show and see in the discussion below, we 
can quantify metrics but to have much meaning, and 
to specify an acceptance level, it is usually necessary 
to also answer “how much difference it will make if 
we are inside, at, near, just outside, or way outside” a 
given level. We ussert rhar we can and should use 
methodr consistent with a statistical quantification 
of reliability at confidence, even though we cannot 
commonly use the fiequentist approach but must rely 
on expert system, fuzzy logic, or Bayesian sets as 
described by Oberkampf and Trucano3 and Booker et 
al‘. Methods described by Logan and Nitta5 can 
eventually help us with “acceptance” levels for 
Validation. Uncertainties and Sensitivities in the 
simulations can be quantitatively related to assessed 
levels of Confidence and Reliability numbers for the 
stockpile during this era of no nuclear testing. 

The goal of Validation is to take the model to a 
quantified state where they can be evaluated for 
acceptance for assessment and certification work at a 
demonstrated level of uncertainty and hence 
confidence. Our analysis timelines span many orders 
of magnitude - sometimes a “hero” fidelity 
simulation is best, but may require 2 years to build 
and run. Other times, an answer just incrementally 
better than back-of-the-envelope is needed, but that 
answer is needed in 2 hours. Balance of suffciency 
and efficiency‘ is the key - balance of funding, 
timelines, priority, and credibility. Tradeoffs are 
always necessary between these. We simply must 
know - and express -what tradeoffs we have 
accepted. 

The Oualitative VER and VAL Meters 
One basic dilemma is to express the “V&V” pedigree 
of a simulation result or conclusion, in a way that 
goes beyond “yes or no”, but remains a fairly simple 
quantitative expression of the V&V status of a 
simulation. Simplicity is essential to the decision 
making process, because calculation results and 
movies are often shown at fast paced meetings where 
numerous topics are covered in a few hours -with 
only cursory detail and never enough time for the 
audience to evaluate the credibility of the detail being 
shown. Typically only a few seconds are available to 
describe the pedigree of a given part of the 
simulation. And yet, impressions are formed at such 
meetings and can lead to misunderstandings and 
regrettable decisions, unless at a minimum some kind 
of graded scale V&V measure is used. 

There is nothing wrong with using a lower quality or 
conceptual analysis to make a point or point out an 
area of risk. However, to avoid having the audience 
take such examples with verbatim precision, a VER 
and VAL meter or equivalent as a minimum should 
be used. 

But, the meters are of course relevant for more than 
just a “quick indicator” at fast paced review 
meetings. The Meter readings (or any such rolled-up 
number rating for V&V) can, in addition: 

0 

0 

0 

0 

Enhance the capability of “designer-centric‘‘ 
or “expert judgment based” V&V; 
Firm up the credibility of conclusions that 
are drawn using any historic methodology; 
Make more scientific the V&V process; 
Make more scientific the decision process; 
Provide fundamentals for rational discourse 
on this subject; 
Provide a rational basis for common 
understanding and expression of V&V level. 
Provide an expression of relative 
information and level regarding V&V 

The concept of a Verification “Meter”, with a Scale 
that reads 0-10, is simple but it should be fairly clear 
in intent. We suggest that the following factors help 
in setting this somewhat subjective but informative 
“0-10” Verification Scale: 

Reading of 0-1.5: 
0 

0 Version Control 

0 SQE Guidelines 
0 Basic Verification Suite 

Extensive Code Coverage Regression 

Most of Element Types Verified 
0 Most of Materials Verified 
0 Most of Contact Verified 

Reading of 7.6-9.9 (Graded Scale): 
Most of Couplings Verified 

Code has a name and user’s manual 

Reading of 1.5-3.5: 

Reading of 3.5-7.5 (Graded Scale: 

Naturally any such Scale reading has to take into 
consideration the features as used for the application, 
regime, and even fidelity of interest. Obviously such 
a “Meter” is still subjective, still qualitative in how 
we set the meter. We should of course strive for more 
than a “1-10” scale. More desirable are quantitative 
Verification Statements such as the one given above 
in the DEFINITIONS. 

Like the Verification or VER Meter, the concept of a 
Validation or VAL “Meter”, with a Scale that reads 
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0-10, is simple but it should be fairly clear in intent. 
We suggest that the following factors help in setting 
this somewhat subjective but informative “0-1 0” 
Validation Scale: 

Reading of 0-1.5: 
0 

0 

0 

0 Calibrated model 

0 Mesh Convergence 
0 Temporal Convergence 
0 Code-to-Code Validation 
0 Sensitivities Qualitatively Correct 

Reading of 5.5-7.5 (Graded Scale): 
0 

0 Validation to numerous tests 
0 Quantitative Validation Statement 
0 Predictive Validation Bound Assessed 

0 All Uncertainty terms quantified 
0 “Fully Validated” [oxymoron?] 

Runs the 1” time step 
Runs desired model to completion 
Obtains an answer: “Blind Trust” fidelity 

Reading of 1.5-3.5: 

Reading of 3.5-5.5: 

Validation to more than one integral system 

Reading of 7.5-9.9 (Graded Scale): 

Naturally any such Scale reading has to take into 
consideration the features as used for the application, 
regime, and even fidelity of interest. The VAL Meter 
reading is as subjective as the VER Meter. The V&V 
process is much deeper and more quantitative than 
any single summary number can depict. But, the 
meters go beyond a “yedno” V&V statement for 
communicating fidelity quickly. 

Linkage between Uncertainty and Validation Level 
have been proposed by others as well, such the “0-1” 
Validation Scale of Oberkampf and Trucano’. When 
the simple quantity V=2/U is overlaid on their 
Validation Metric, the curves are similar. Both our 
“0-10” scale and other measures like the “0-1” scale 
of Oberkampf and Trucano’, and in addition the “0- 
5” Scale of Trucano et ala are useful and more 
valuable than either no indicator at all or an 
oxymoron like “fully validated” or “validated code”. 
Both expressions for “V” should be used with care. 

To begin to take us beyond the simplistic “meter” or 
“Scale” summary, we have tried to capture four of 
the key levels of Validation contained in the 
following nomenclature: 

DEMO: Demonstration, i.e. run to completion 
CAL: Calibration, i.e. satisfactory agreement with 
accepted legacy metrics 
VAL: Validation, agreement to predefined metrics, 
without [further] calibration 

PVAL: Predictive Validation, i.e. agreement of a pre- 
test prediction with the test result within the pretest 
confidence bounds of uncertainty established through 
Validation. 

Uncertaintv Ouantification WO): 
Since we endorse the concept that validation should 
be a quantitative statement, it is essential to consider 
validation and Uncertainty Quantification (UQ) as a 
set. Uncertainty is inseparable from the confidence at 
which it is stated. Therefore, validation, uncertainty, 
and confidence become inseparable. 

We now introduce definitions of the components of 
uncertainty; in this work we will focus mainly on 
some simple ways to handle Epistemic Uncertainty 
and Model Uncertainty. Consider, after Oberkampf 
and Trucano3, these four components of “Error” or 
“Uncertainty”, as defined here as the differences 
between quantities “q” of interest: 

For a measurement of the quantity ‘q’ of interest, le<: 

or alternately3: 

We might consider adding to Oberkampf and 
Trucano’s set an Eo, and characterizing the E, loosely 
with words, so that now: 

Variability I Aleatory Uncertainty 
Eo=(qn.ture-q..ture): [3a1 

E l=(q..ture-qup): [3b1 
Uncertainty I Epistemic Uncertainty 

Error, in model 
Ez=(qexp-qeuct): 

Error, due to formulation or weak form 
E F ( q e x s c t - q h , t d :  [3d1 

E43 qh,vO- qh,t,I,C): [3e1 
Error, due to discretization or solution error 

The above E, are a useful “notional linear 
combination” of error I uncertainty contributions in a 
validated analysis. Our quantitative method will 
require that we express variability, uncertainty, and 
error as the generalized Uti, which becomes an input 
to the Quantitative Reliability at Confidence method. 
To generate each uncertainty term U C ~  on an 
environmental condition (subscript C) due to a model 
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contribution (subscript ‘i’), we combine independent 
uncertainty contributors (subscript ‘j’ on the 
Parameter uncertainty or change Up, or A,)  and the 
sensitivity Scij to them as: 

U,,=RSS(S,,Up,) [3fl  

Here we use “RSS” to represent the root-sum- 
squared quadrature that we can assess for 
independent contributors. The sources, numerical 
values, and nature [i.e. assumed or known form of 
PDF, Probability Distribution Function] for all these 
“notional linear combination” Ei and the more 
rigorously combined Eqn. 3f should be stated as part 
of validation with uncertainty quantification. That is, 
enough information should be provided as part of the 
Validation I UQ to enable the QRC methods of this 
work (or similar methods) to be accomplished 
quantitatively and hence enable a quantitative 
validation statement. 

10 steps to a V&V Drocess: Summarv Level 
Considerations 

Our 10-step V&V summary is as follows: 

1. A Program Plan should exist with scope and 
timeline to balance the ability to build, verify, 
and validate code and model capability against 
the assessment needs of the product line. 

2. A Code Capability Plan should exist, with a 
simple method to track the V&V status of each 
capability. 

3. A Risk Assessment methodology should exist 
and be documented. For example, in the area of 
engineering mechanics, a major part of our risk 
assessment mitigation is the ability to use 
multiple codes for any given analysis or planned 
analysis. 

4. Verification (code feature) and Validation 
(prioritized system requirements) listings should 
exist and be prioritized. For Validation, an 
example of such a target list would be a Matrix 
of R, and Ci terms for all “i” environments in our 
Requirements. The Validation list is of necessity 
tied to the prioritized product line assessment 
and certification needs and timing. 

5 .  The long term plan from code features through 
V&V to assessment capability should address 
the sequence of SQE (Software Quality 
Engineering), VER (Verification), CAL 
(Calibration), and VAL (Validation): 

‘ 

a. SOE: Software Oualitv Engineering: 
The software quality engineering practices 

may be tailored for each individual code, but 
should conform to a standard accepted by 
the developers’ and users’ organization. The 
ones we use include the recent TriLab 
ASCW&VlSQE of Hodges et ai9, and the 
LLNL ASCW&V/SQE supplement of 
Storch et all0. 

maximum state of temporal, spatial, and 
iterative convergence achievable, we assess 
the remaining error in the answers provided 
by the code for the feature being verified. 

C. VEL,,: Solution Verification: We 
assess the components of model error 
change as a function of discretization 
refinement in the temporal, spatial, and 
iterative domains. Model speed (e.g. 
element-steps per millisecond or inverse 
grind time) should be reported as it is key to 
determining tradeoffs of platform usage, 
time to solution, and quality of solution. 

CAL: Calibration of a Model .We 
establish and show existence of a model fit 
to some assemblage of data, but not 
uniqueness. 

e. VAL,: (Risk Mitigation) Validation, 
Code Vs. Code (CVC). This method is often 
time and cost effective but fraught with 
dangers of misinterpretation and misuse. 

b. -: Code Verification: In the 

d. 

f. VAL=: (Sensitivity and Uncertainty) 
Validation, with Sensitivity plus Uncertainty 
plus Variability (SUV) .  This may be 
appropriate when for example only one 
integral test is available. The uncertainty 
bounds obtained may be quite wide, 
especially when several terms are rolled up 
(multiplied) in succession. In this VAL, 
method we multiply the sensitivities SCG by 
what may well be large and estimated 
material, environment, tolerancing, or other 
parameter uncertainties Up,. Adequate 
statistical quantities of test or measurement 
data on the Up, will help tighten our 
uncertainty bounds to meaningful levels on 
rolling up several terms. This information 
about each Up, must be obtained at a cost 
justified by its reduction in a given Up, and 
the importance of that Up, in total system 
performance. This importance is determined 
by knowing the values of the sensitivities 
Sei,. We must therefore have some 
verification and experimental component or 
modular validation [see the step below and 
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AIAA2, on Phased V&V] to V&V the 
model sensitivities Sc,,. This helps mitigate 
the interpolation and extrapolation dangers 
inside or outside the validated region. These 
derivatives Sc,, form the basis of our integral 
i”’ environment uncertainty estimates for this 
method. For example, for the i“‘ 
environment, our Uncertainty in Capability 
of the system may be: 

Uci=RS S (ScijU,) [3fJ 

As with Verification, reporting model 
speed (e.g. element-steps per millisecond or 
inverse grind time, total model run time, and 
total user time) is key to determining 
tradeoffs of platform usage, time to solution, 
and quality of solution. 

level, across the rolled up set of 
environments of application, can be done 
using a Maximum Likelihood Validation 
(mlv) fit to the integral data. In other words, 
if we are fortunate to have several integral 
tests, the demand that our model match over 
all of them will more readily quantify tighter 
uncertainty bounds. In other words, it helps 
us solve the dilemma that we usually do not 
have enough data (or model validation) to 
do VAL,, without the subsequent rollup of 
terms leading to huge uncertainty bounds. 
And yet, with an adequate number of 
integral tests, we have a body of evidence 
that says that the uncertainties are not so 
boundless as our (incomplete) VAL,, 
would contend. VALmI, is a way of showing 
our likely uncertainty embedded in the 
integral model vs. the integral data. The 
Validation, if done cross-test and cross- 
system (several systems with a similar 
mission) will be more robust and with 
tighter quantified uncertainty bounds. 

h. VAL,: Validation using Prediction (PRE). 
In principle we can “predict” tests that have 
already been done if we use a calibrated, 
validated model, with no firther degrees of 
fieedom adjusted, and then “predict” one 
additional pre-existing test N=N+1 . 
However, this will always leave some doubt 
as to a subconscious bias of our fitting 
process, since we may have been influenced 
by that existing data even though it was not 
directly used to develop our validated model 
fit. A measure of VAL,, can be obtained by 
using a low CALNAL ratio in the VAL,,,,, 
process, so that if we do no additional 

€5 VAL&: Validation at the integral 

tuning after our VAL,,, fit to part of the 
data, we can “predict” (really post-predict) 
the rest of our existing data and see how 
good our “predictive fit” would be for the 
data we have. 

6. Phased or Tiered V&V: After AIAA’ and 
Trucano et a18, we suggest that the previous step 
be denoted and tracked at one of four phases or 
tiers: 

a. Unit Verification or Validation: A single 
code feature or quantity of interest 

single coupling of features or quantities of 
interest; likely still a single type of physics 
e.g. mechanics or thermal or fluids. 
Verification should still be possible for this 
class. Validation at the component level. 

c. Complex coupling V&V: Validation at the 
component or integral level, with multi- 
physics couplings e.g. mechanics with 
thermal with fluids. Verification will be 
difficult if not impossible; some Method of 
Manufactured Solutions ( M M S )  verification 
as in Roache” may be possible. (Analogous 
to VAL,, of Step 5f). 

d. Integral V&V: A V&V level suitable for 
integral system assessment, qualification, 
and certification. (Analogous to VALd, of 
Step 5g). 

Metrics: Quantitative V&V, Independent of 

b. Benchmark or simply coupled V&V: A 

7. 
the Code DeveloDment Teams: 

a. Specification of a set of metrics for 
assessing the execution of the above 
activities. We suggest that when a code 
capability is acquired or declared by code 
development, a subsequent 1-2 year period 
is needed to enable the quantified V&V. 

b. Assessment of code and model performance 
as determined by the ultimate users of the 
code product, specifically V&V andor 
design and assessment teams not part of the 
development team, for the selected activities 
via the defined metrics. If adequacy or 
accreditation is not addressed, V&V should 
at least provide the quantitative information 
needed to address adequacy. 

8. Path Forward: Generation of future V&V [and 
code development] actions based on the 
outcomes of this assessment; this should address 
any additional items needed fiom code 
development, V&V, or experimental data. 
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9. Documentation and archiving of experimental 
data and model results sufficient for future 
traceability and reproducibility of V&V 
activities. 

10. Integration into the larger V&V 
Community. 

RELATION OF V&V TO ADEOUACY, 
ACCEPTANCE. OUALIFICATION, AND 

CERTIFICATION 
In order to set true acceptability Metrics for 
Validation, we must know where we are going - 
what the model tells us, and how much it matters. 

We show a path from V&V (with UQ Le. 
Uncertainties at stated Confidence) through the use 
of validated models to get component and integral 
system margins (Le. Factor of Safety = Margin+l). 
With these quantities, we proceed to an assessment 
of Quantitative Reliability at Confidence equivalent 
for conditions of little or no full system testing. 

An important theme is that these are the areas from 
which we derive “acceptance” or “adequacy” criteria. 
What is “good enough” V&V is a function not only 
of Requirements but of the implications regarding 
Benefit I Cost tradeoffs with time and the rest of the 
mission, business plan, and product line. We feel that 
to be ready to address “acceptance” in V&V, it is 
essential to have a process that leads, in the end, to a 
Benefit I Cost closure. In other words, our 
Quantitative V&V Statements have to balance both 
sufficiency and efficiency6: 

Suflciency: Doing enough V& V 

Eflciency: Optimal balancing of our resources 

We must prioritize our resources and determine the 
acceptable level of uncertainty. For product 
acceptance [in our case stockpile stewardship], it is 
our responsibility to assure, with high confidence 
“C” in a high assessed reliability “R”, that the system 
can and will accommodate its lifetime of 
environments. We are developing and quantifying 
such a methodology to lead us to values of C and 
assessed R to fold into a total performance number or 
“non-frequentist RC-Equivalent” for the component 
or system level. We emphasize the wording, assessed 
Reliability at Confidence, because although we may 
never disprove an assertion that Reliability is in fact 
Unity, we can only quantify what we can assess with 
positive numerical evidence. 

This Quantitative Reliability at Confidence 
assessment is the next step toward closure of our 
Value Engineering I Investment Strategy method. 

QRC depends on the notion that Uncertainty (U) and 
Confidence [C] are statistically linked; whether we 
are coin flipping with a frequentist number of coins 
“N” or using an inferred number of information 
points “fuzzy N*”. With an (albeit assumed) PDF, 
we can use our V&V-obtained Uncertainty at 
Confidence statistical validation statement to obtain 
an assessed Reliability at Confidence. At this 
juncture, we note for quantified V&V: 

e V&V has a statistical nature, whether with a 
frequentist number of comparisons N or 
inferential, relevance based N* 

V&V must provide uncertainty at a stated 
[and quantified] statistical confidence 

V&V must show the origins of its N or N* 
and the [perhaps expert judgment] 
weightings used 

V&V must allow us to assess a Reliability 
measure [R] from Margin (M) and assumed 
or known PDF, whether normal distribution 
or other 

V&V must provide the information to 
address adequacy, before stating whether a 
given model is “validated for its 
application” or not 

e 

These factors will allow the V&V process (and 
resulting validated models) to contribute to the Value 
Engineering Investment Strategy that has a 
mathematical closure (in dollars for example). 

Of late, there has been much interest in quantitative 
certification, a quest for “confidence” that is more 
than just “low”, “medium”, or “high”. It is essential 
to clarify what methods can and cannot be credibly 
used under given circumstances, because of the 
importance of the topic and the methods, and above 
all, the emerging desire to use them as business 
decision and investment strategy tools. There are 
several methods developed at our partner national 
laboratories as described and referenced more 
thoroughly by Logan and Nitta’. These works have 
helped to motivate our own methodology. 

From V&V to ORC: Ouantified Reliabilitv at 
Confidence 

We will describe a general process for moving from 
V&V to quantified certification as we view it’. We 
present the basic concept for the relation between 
V&V and QRC or quantified reliability at 
confidence. We have built as much rigor and 
[quantified] judgment as we can into QRC, and 
employed statistical terms, be they fiequentist or 
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inferential in nature. We have balanced this against 
our desire to keep our overall equation [I] modular in 
nature; meaning that we can successively ‘turn off 
or ‘set to unity’ features and terms until the equations 
and methods reduce to the binomial coin-flipping 
situation. The path of V&V with UQ, then QRC, and 
then QSV is one way of expressing a methodology 
from V&V to Value Engineering with traceable, 
quantified closure. 

Moving toward the middle of Figure 1, we can now 
express a quantity “M/U” which has been called 
Figure of Merit (FOM) in a notional sense. In this 
equation, “U” is a global “U” for a given 
environment scenario. FOM=M/U is a simple 
concept and indeed an old one, but it cannot be left 
open ended; for closure, “U” requires specification of 
confidence level “C”. Of note is the subscript on the 
second (MAJ) term (at the right of center). 

We must go beyond an open-ended “MN” in order 
to proceed into the realm of Quantified Reliability at 
Confidence (QRC). In the second (M/U) box of Fig. 
1, the “Zqm=MAJ at 0’’ after the Standard statistical 
Z”, quantified uniquely and used in QRC, denotes 
some measure of standard deviation in a Gaussian or 
other Probability Distribution Function (PDF). This 
is an important factor required to later derive the 
reliability equivalent [R] quantity for the “RC 
Rollup” at the Tiered or Integral level. Note the 
presence of N*, the number of “data elements” in the 
set being evaluated. The quantity N* has an analogy 
to, for example, a binomial “N” in binomial analyses 
for R and C. However, N* is a weighted “N“ - 
weighted with the relevance of number of tests, 
relevance of tests, number and relevance (e.g. VER 
and VAL settings) of analyses, or expert opinion 
weighting as discussed by Booker et a14. 

Measures of “M” and “U” used in ORC 
Our comfort at the system level comes from the sense 
that “Margins” are “large”. Consider Figure 3. Here, 
we can express our uncertainty in terms of Normal or 
other Probability Distribution Function (PDF) 
defining in essence the point where a Standard 
Normal Distribution variable12 “Z” becomes Z=1. 
With our definition of mid-point margin “M” as 
M=l-FOS (Factor of Safety), there is a direct analogy 
between the standard statistical “Z” and our Z for 
QRC, Zqrc=(M/LJIN*,m). Expanding U [and de facto 
raising R and C as M+O] are expressed another way 
by Wood’3 as: “you have to express margin in terms 
of the probability it will be used up”. The tails 
overlapping this closure then give us measures of R, 
and the method we use to obtain this information 
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(equivalent sample size N*, our fuzzy N) gives us the 
value of C. For these methods, we go beyond a 
simple “go or no-go” Figure-Of-Merit criterion, to a 
statement that lZl>% cr , where n, is the number of 
standard deviations over which we define our 
uncertainty (for the normal PDF assumption). This 
way, we obtain lower bound assessed numerical 
equivalents for Reliability R at Confidence C that can 
be quantitatively defended from our V&V 
assessment process. If the resulting R at C are not 
acceptable, we may be able to improve them by 
fiuther investment in the codes, V&V, or validation 
testing. These are then investment strategy choices 
we can trade off in a quantitative way as described by 
Logan and Nitta’. 

I 

Zqrc=Mmi&JIN*,a 
Specify U@ eg 2a OhC 

Close “PDF” tails to get %R @ %C 

Figure 3. QRC’s Z,, method for Margins and 
Uncertainties allows quantitative extension to 
R(M,U) at C(N*), and then to QSV. U(N*,s e.g. root- 
sum-squared quadrature. 

Following are some key points about QRC, our 
preferred method for linking V&V and Uncertainty 
to Reliability and Confidence and ultimately value 
and investment measures: 

0 QRC links Margin “M” and Uncertainty “U”, 
directly to “Reliability R at Confidence C”. 
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0 The “Zqre=M/U(a,~*” term in QRC with a 
mid-point M is a good start as long as 
physical feel for the quantities we are used 
to is not lost; “W has been used for 
decades as Signal-To-Noise and Process 
Control. Since U at C is a direct output of 
our preferred validation statement, the 
“Zqrc=h4/UJa,N*” term in QRC, as opposed to 
some other methods, enables closure; it is 
not open-ended. 

Most of the components of QRC are not 
really new. QRC certainly builds, in our 
business, on the works referenced by Logan 
and Nitta’ and others, just as it builds on the 
standard statistical definition of “Z”. We 
believe what is new about QRC is that it 
enables complete and quantified (in 
reliability, dollars, or both) linkage from 
V&V with UQ, through QRC, into a Value 
Engineered Investment Strategy. 

0 QRC does in fact employ the definition of U 
as Ulo,~*, or U at Confidence C (i.e. our 
quantitative validation statement). 

0 QRC does define Confidence C 
quantitatively, but with a simple analogy of 
our Inferred, Fuzzy N* to the frequentist N 
of coin-flipping. 

ExamDie of Process to a Ouantitative Validation 
Statement 
The preceding text and figures have laid the 
framework to take us through a Quantitative 
Reliability at Confidence (QRC) analysis. We now 
provide an example of the use of available data and 
model analysis results to generate the numbers 
necessary to make a Quantitative Validation 
Statement. 

An example, using a flow-based model of internal 
combustion engine power output as a function of 
exhaust restriction will show how we extend the 
methodology from a confidence bounded uncertainty 
to obtain the Z, term we need for Quantitative 
Reliability at Confidence, QRC. Our desire is to take 
some “available data” regarding power output versus 
exhaust restriction (translate, noise reduction), and 
then find the exhaust restriction “Margin”; that is, the 
amount of exhaust flow restriction we can tolerate 
and still produce the desired power output, say “300” 
or the value on the plot’s x-axis. 

American Institute of Aeronauti 

But, our “available data” just looks like a pattern full 
of scatter (the mixed condition data points in Figure 
4). This is because, as is most complex systems, 
power output is a function of many things - in this 
case not just exhaust restriction, but many other 
factors that were varied from test-to-test. This is not 
ideal in trying to isolate the effect of exhaust 
restriction, but it may be all the data we have. We are 
lucky to have as many as N=29 data points; this 
relatively large ‘W“ will help reduce our epistemic 
uncertainty error El. Our goal is to use a suitable 
model to tell us what the power output would have 
been, under standard conditions with a “standard 
production build”, with exhaust restriction then being 
the only variable remaining. Suffice it to say that 
there is such a model; in this case a “closed form” 
model, hence free of weak form, approximation, and 
spatial-temporal discretization errors, so we could 
claim b=E4=0, but with many potential “model 
errors” or “physics errors” that we would lump into 
the E2 term. In addition, this particular model 
provides a smooth fit (the smooth central line in 
Figure 4) on normalizing all N=29 data points, but it 
uses K=6 degrees of freedom in the model fit. These 
are mostly “physically based” degrees of freedom; 
that is, with enough component level test data we 
could get down to say K=l; nonetheless, since all we 
have is system level power output, we can only guess 
what values these component-level model input 
numbers would have been or might have been, and 
use them as degrees of freedom to fit out system level 
model of power output. 

With N=29 and model degrees of freedom K=6, our 
closed-form model does quite well in providing a 
“smooth curve” of output versus restriction. Some 
method for UQ, Uncertainty Quantification, must be 
used to tell us how well our model really did capture 
the data as measured, else we would have no 
“confidence” in using this model to provide a curve 
for “standard condition” performance. The outer (20) 
Confidence Bounded Uncertainties in Figure 4 
account for the difference between the actual “mixed 
condition” data available and our model fit to that 
data, we can establish model error (including bias 
error as the reader may notice) in our model. As we 
might expect, the confidence bound estimates are 
broad, in part due to our epistemic uncertainty El, 
and they become more broad as we get more distant 
from where the actual measurements are clustered, 
and we can observe a bias error in the model result as 
the confidence bounds appear skewed. 

We note, as shown in Figure 4, that even though 
there was a lot (N=29 points) of “available data”, it 
will not line up with our curve for standard condition 
output vs. restriction. It just means that our model 
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was built from a lot of data (N=29 points). Our 
confidence in the model is expressed by the bounding 
lines. The fact that the raw available data does not fit 
our smooth “standard condition” line is in fact an 
indication that we are extrapolating something - not 
restriction, but some other parameter affecting output 
at a given restriction -to get to standard conditions. 
Or, it may be that one of our raw data points happens 
to lie right on the standard condition model line; this 
may mean we did not extrapolate at all, or it may 
mean that we used our model to extrapolate two non- 
standard conditions and ended up “back on the curve, 
so it looks like we did not extrapolate at all. 

This methodology and numerics are a minimum set 
for a minimal fidelity QRC analysis. Next, we sketch 
some quantities of interest on our model for output to 
capture our QRC measure of Margin and 
Uncertainty, “Zqrc=MIUIN.,$. If we now compare 
Figure 4 to Figure 3, we see the similarity in the 
quantities “mid-point M” (that is, power capability P, 
minus power required Pr), and the relevant model 
uncertainties (E, and E*), lower on capability Ucl, and 
upper on requirement U,; we assume U,=O in this 
example (See Figure 3). Now, if there is no M e r  
uncertainty, ie aleatoric uncertainty error El=O and 
approximation I discretization I solution uncertainty 
errors E3=E4=0 (a good approximation in this closed- 
form case). Then our assessed lower bound reliability 
“R” is the number of Confidence-corrected sigmas 
defined by this specific “Zqrc=MIUIN*,$. 

500 
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rn 

Fl 
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-_ 

Figure 4. Confidence-bounded (e.g. 2-sigma) 
standard-condition model fit to available mixed- 
condition data. Final steps include assessment of 
Margin, enabling determination of Zqrc. 

Now that we have worked our example all the way 
through Figure 4, we can proceed to use the QRC 
value we have generated. However, in this case, our 
VAL,,,,” (Maximum Likelihood) fit only makes 
inferences about individual sensitivities and 
parameter input uncertainties based on our integral fit 
to the system level data. We cannot directly tell 

which parameter or sensitivity contributed the most 
to our confidence-bounded uncertainty band. A 
model based sensitivity table should be generated 
before significant funds are spent on validation 
component or system tests. 

The QRC value enters into the Risk Diagram of Fig. 
2. As the level of V&V goes up, our Likelihood of 
Risk (due to poor model V&V) goes down. 
Multiplying this V&V-QRC based likelihood by the 
separately determined Consequence in Fig. 2 
provides a direct (dollar benefit) measure of V&V. 
This is shown in Fig. 2, where adequate V&V 
reduces the likelihood of failure, and timely V&V 
(i.e. concurrent with design vs. post-mortem) can 
further reduce Risk if we design our business and 
products to minimize the consequence as well. 

SUMMARY and CONCLUSIONS: 
Our V&V methodology includes a process leading 
to quantitative V&V statements; that is, confidence 
bounded uncertainty on a quantity of interest over a 
specified regime of interest. The concept of a simple 
“0-10 Scale” is suggested as afirst step toward 
quantitative V&V. Quantitative statistically based 
V&V statements will be the next evolutionary step. 

The advantage of Z,, leading to Quantified 
Reliability “R” at Confidence “C” (QRC) is that it 
lets us: 

Relate Margin “M” and Uncertainty “U” to “R”. 

Demand that we associate “R‘ with a “C“ - and 
quantifies that “C“ based on eg “Fuzzy N*”. 

Show how better assessments of M and U - and 
increasing the “effective number of coin flips” 
N* - quantitatively tightens U allowing higher 
quantified C. 

Eventually, as shown by Logan and Nitta’, we 
can express this situation as value (dollars) via 
QSV - and so we can protect the investments in 
computing, assessments, tests, etc by 
QuantifLing their System Value (QSV. This 
method can provide a clear link between 
“science” and V&V and “Value” and 
“Investment Strategy” - it is our hove that ORC- 
into-OSV will vrovide this link. 

Provide a numerical [albeit judgment folded] 
estimate of “how much confidence do we need 
and how do we get it”. 
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M 

M, 

CI population mean 

N Frequentist N, Number of trials as in coin- 
flipping 
Inferred, Weighted, Bayesian or Fuzzy N 

Margin, where Factor of Safety = M+l 

Margin, in the ith environment 
0 Provide a quantitative V&V statement as a lower 

statistical bound. This has the advantage of being 
quantitative and assessable, but also the 
advantage in that we recognize that the upper 
bound on a product may still be quite high (even 
unity); this avoids conflict with assertions, 
whatever the source, that “high reliability is 
expected or promised” from a given product. 
The V&V-based lower bound assessment and 

N* 

PDF Probability Distribution Function 

QRC Quantitative Reliability at Confidence 
the upper bound assertion can both be right; and 
both have amrovriate uses. QSV Quantitative Stockpile Value .. . 

PVF Present Value Factor, 08VF-4 
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RC* 
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d 

U 

UQ 
V&V 

Z 

Reliability in the ith environment (i omitted 
if only one) 

Reliability at Confidence product equivalent 

Sensitivity in Capability in the ith 
environment to the jth parameter 

population standard deviation 

Uncertainty, General or “System” [in V&V 
always at a confidence C] 

Uncertainty in Capability for the ith 
environment 

Uncertainty in Parameter for the jth 
parameter [material, tolerance, etc.] 

Uncertainty Quantification 

Verification & Validation 

Standard Normal Distribution Variable for 
variable X, Z=(X-p)/s 

Standard Normal Distribution Variable, 
Z=M/UIN*,, in QRC 
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ASCI Accelerated Strategic Computing Initiative 
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